Privileged Information for Data Clustering
نویسندگان
چکیده
Many machine learning algorithms assume that all input samples are independently and identically distributed from some common distribution on either the input space X, in the case of unsupervised learning, or the input and output space X x Y in the case of supervised and semi-supervised learning. In the last number of years the relaxation of this assumption has been explored and the importance of incorporation of additional information within machine learning algorithms became more apparent. Traditionally such fusion of information was the domain of semi-supervised learning. More recently the inclusion of knowledge from separate hypothetical spaces has been proposed by Vapnik as part of the supervised setting. In this work we are interested in exploring Vapnik’s idea of ‘master-class’ learning and the associated learning using ‘privileged’ information, however within the unsupervised setting. Adoption of the advanced supervised learning paradigm for the unsupervised setting instigates investigation into the difference between privileged and technical data. By means of our proposed aRi-MAX method stability of the KMeans algorithm is improved and identification of the best clustering solution is achieved on an artificial dataset. Subsequently an information theoretic dot product based algorithm called P-Dot is proposed. This method has the ability to utilize a wide variety of clustering techniques, individually or in combination, while fusing privileged and technical data for improved clustering. Application of the P-Dot method to the task of digit recognition confirms our findings in a real-world scenario.
منابع مشابه
On the importance and incorporation of additional knowledge in cluster analysis
Analysis of data without labels is commonly subject to scrutiny by unsupervised machine learning techniques. Although abundant expert knowledge exists in many areas where unlabelled data is examined, frequently such knowledge is not incorporated into automatic analysis. Semi-supervised learning allows for the incorporation of additional knowledge with the help of labels or constraints. However ...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملParcellation of left parietal tool representations by functional connectivity.
Manipulating a tool according to its function requires the integration of visual, conceptual, and motor information, a process subserved in part by left parietal cortex. How these different types of information are integrated and how their integration is reflected in neural responses in the parietal lobule remains an open question. Here, participants viewed images of tools and animals during fu...
متن کاملCombining Privileged Information to Improve Context-Aware Recommender Systems
A recommender system is an information filtering technology which can be used to predict preference ratings of items (products, services, movies, etc) and/or to output a ranking of items that are likely to be of interest to the user. Context-aware recommender systems (CARS) learn and predict the tastes and preferences of users by incorporating available contextual information in the recommendat...
متن کاملارائه یک الگوریتم خوشه بندی برای داده های دسته ای با ترکیب معیارها
Clustering is one of the main techniques in data mining. Clustering is a process that classifies data set into groups. In clustering, the data in a cluster are the closest to each other and the data in two different clusters have the most difference. Clustering algorithms are divided into two categories according to the type of data: Clustering algorithms for numerical data and clustering algor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 194 شماره
صفحات -
تاریخ انتشار 2012